CARBON-13 NMR STUDIES OF SOME ORGANOTIN(IV) COMPOUNDS

TALAL A.K. AL-ALLAF,

Department of Chemistry, College of Science, University of Mosul, Mosul (Iraq) (Received October 1st, 1985)

Summary

The ¹³C chemical shifts and ¹³C-¹¹⁹Sn,¹¹⁷Sn coupling constants for several organotin(IV) compounds $R_x SnCl_{4-x}$ (R = Me, Buⁿ, Ph; x = 1-4) have been measured in both inert (CDCl₃) and donor (DMSO-d₆) solvents, as have ¹³C data for the compounds $R_x SnR'_{4-x}$ (R = Me, Ph; R' = Buⁿ and R = Me; R' = Ph; x = 1-3) and the compounds Me₃SnX (X = pseudo halide). The δ and ¹J(C-Sn) values appear to depend mainly on the type and number of substituents on tin and the donor ability of the solvent. There are linear relationships between the number of substituents (x), and both δ and ¹J(C-¹¹⁹Sn) for almost all the $R_x SnX_{4-x}$ series (R = Me, Buⁿ, Ph; X = Cl and R = Me, Buⁿ; X = Ph; x = 1-4), when measured in a single solvent, e.g. CDCl₃. There is an excellent linear relationship between ¹J(C-¹¹⁹Sn) and ²J(¹HC-¹¹⁹Sn) for the compounds Me_xSnCl_{4-x}. Determination of ¹³C data for Me₃SnCl and Ph₃SnCl in a range of solvents reveals that the value of ¹J(C-Sn) increases with the donor ability of the solvent.

The marked increase in the values of ${}^{1}J(C^{-119}Sn)$ in DMSO- d_{6} for the compounds $R_{x}SnCl_{4-x}$ (R = Me, Buⁿ, Ph) on going progressively from x = 4 to x = 1 suggest tin coordination numbers of 4, 5, 6 and 6, respectively. Some additional physical data are presented for the isolated complexes formed from DMSO and the compounds Ph_xSnCl_{4-x} (x = 1-3) and Me₃SnX with X = N₃ or OCOMe.

Introduction

A large body of NMR data for organotin(IV) compounds reported in the period from 1960–1975 have been reviewed by Petrosyan [1]. Additional ¹³C NMR data were reported subsequently [2–7]. A previous investigation of the ¹H NMR spectra of ethylhalostannanes in CDCl₃ and DMSO- d_6 has shown that the spectral parameters depend strongly on the solvent used [8]. Similar observations were made by Mitchell [9], who also found that the ¹J(¹³C–¹¹⁹Sn) coupling constants for some organotin compounds provide a good guide to the tin coordination number. Recently some Ph₃SnX [4,5] and Buⁿ₃SnX [6] compounds with X = Cl, Br, OCOMe,

(Continued on p. 340)

punoduo	Solvent	C(I)		C(2)		C(3)		C(4)	
		8 a	$^{1}J(C-Sn)$	8 "	$^{2}J(C-Sn)$	8 a	³ J(C-Sn)	8 "	⁴ J(C-Sn)
4e4Sn	CHCI ₃	- 9.4	337						
	DMSO '	- 9.1	333						
4e ₃ SnCl	CHCI,	-0.7	381.7						
	DMSO	3.3	510.6						
fe ₂ SnCl ₂	CHCI ₃	6.7	481.4						
	DMSO	22.7	1014.4						
feSnCl ₃	CHCI ₃	11.0	701.5						
	DMSO	22.6	1017.6						
u4Sn ^b	CCI₄	9.1	310	29.6	25.0	27.6	52.0	13.7	
u ⁿ SnCl	CHC1 ₃	17.6	338.7	28.0	20.6	27.0	65.4	13.7	
	DMSO	21.0	459.0	28.0	29.2	26.5	72.2	13.7	
u ⁿ 2SnCl ₂	CHCI3	26.9	421.2	26.9	43.0	26.2	84.2	13.4	
	DMSO	37.5	854.5	27.7	46.4	25.6	153.1	13.8	
u ⁿ SnCl ₃	CHCI,	33.4	651.6	26.8	42.7	26.2	85.2	13.3	
	DMSO	37.8	826.0	27.6	44.1	25.5	147.0	13.6	
h₄Sn	CHC1 ₃	138.4	515.7	137.6	36.8	128.8	53.4	129.3	5.2
h ₃ SnCl	CHCI3	137.3	614.7	136.2	50.0	129.2	64.7	130.5	11.8
	DMSO	143.7	811.8	136.0	50.0	128.3	70.6	128.9	17.0
h ₂ SnCl ₂	CHCl ₃	136.8	786.8	134.9	63.3	129.7	86.8	131.8	17.7
	DMSO	155.0	1548.7	134.7	70.6	127.3	125.0	127.7	23.5
hSnCl ₃	CHCI 3	135.9	1123.6	133.9	77.5	130.3	126.4	133.1	25.4
	DMSO	155.2	1629.6	132.9	79.4	127.5	138.3	128.2	50.0
	DMF	156.0	1645.8	133.9	76.4	128.2	141 2	128.9	49.7

(R = Me, Buⁿ, Ph; x = 1-4) IN CDCl, AND in DMSO-d/ ¹³C NMR DATA; § (ppm) AND "J(C-¹¹⁹Sn) (Hz) FOR THE COMPOUNDS R_xSnCl₄

TABLE 1

338

2	
ш	
Ĵ,	
9	
~	
L L	

h or Bu^n and $R = Ph$, $R' = Bu^n$; $x = 1-3$) IN		
(R = Me, R' =]		
DUNDS R_xSnR ' _{4-x}		
FOR THE COMPC		
<i>"J</i> (C- ¹¹⁹ Sn) (Hz)		
TA; § 4 (ppm) ANI		
RBON-13 NMR DA	ðCI,	-
S	IJ	

Compound ^b	Me	Bu ⁿ				Ph			
	(8) J(C-Sn)	(8C(1)) ¹ J(C-Sn)	(§C(2)) ² J(C-Sn)	(§C(3)) ³ J(C-Sn)	(& C(4))	(8C(1)) ¹ J(C-Sn)	(§C(2)) ² J(C-Sn)	(§C(3)) ³ <i>J</i> (C-Sn)	(§C(4)) ⁴ <i>J</i> (C-Sn)
Me ₃ SnPh	(-9.7) 350.7	-				(142.1) 305 4	(135.8) 36.1	(128.4) 49.7	(128.7)
Me2SnPh2	(-10.2)					(140.5)	(136.2)	(128.3)	(128.6)
MeSnPh ₃	364.8 (10.6)					488.4 (139.1)	36.1 (136.7)	50.0 (128.5)	10.5 (128.9)
1 	376.6					509.0	36.1	48.1	10.3
Me ₃ SnBu"	(-11.5) 300.9	(10.2) 350.7	(29.1) 25.8	(27.2) 51.6	(13.8)				
Me, SnBu ⁵	(-11.4)	(10.2)	(29.1)	(27.3)	(13.8)				
1	301.0	357.6	25.6	50.2					
MeSnBu3	(-12.7)	(9.6)	(29.3)	(27.4)	(13.8)				
ı	288.7	330.1	20.7	44.7					
3u ⁿ SnPh		(9.6)	(29.2)	(27.4)	(13.7)	(141.9)	(136.5)	(128.0)	(128.0)
		339.7	20.6	47.0		391.2	30.9	39.7	10.3
Bu ² ₂ SnPh ₂		(10.7)	(29.4)	(27.8)	(14.1)	(140.8)	(137.3)	(128.7)	(128.9)
1		357.4	20.6	59.0		435.3	32.4	44.2	14.7
Bu ⁿ SnPh ₃		(10.3)	(29.2)	(27.4)	(13.7)	(139.1)	(136.8)	(128.3)	(128.4)
		366.2	20.6	61.8		480.0	35.3	47.0	17.6

etc., have been studied in one inert, and several donor solvents. Some complexes of organotin compounds of the type Me_xSnCl_{4-x} , x = 0, 1, 2, 3 with donor solvents have been isolated but they were characterized only by elemental analysis [10], the complex $Ph_2SnCl_2 \cdot 2DMSO$ has been characterized by X-ray diffraction [11a,b]. There has been no detailed study of solvent and substituent effects of ¹³C NMR parameters of organotin compounds, and because of this, and in order to obtain additional information about the nature of the ¹³C-¹¹⁹Sn interaction for some organotin compounds not previously studied I have examined the ¹³C spectra of the compounds. R_xSnCl_{4-x} (R = Me, Bu^n , Ph; x = 4, 3, 2, 1) in both inert and donor solvents, those of the compounds $R_xSnR'_{4-x}$ (R = Me, Bu^n ; R' = Ph and R = Me; $R' = Bu^n$) in CDCl₃ only, and those of the compounds Me_3SnX , (X = pseudohalide) in DMSO- d_6 only.

Results and discussion

The carbon-13 chemical shifts (δ (ppm)) and ¹³C-¹¹⁹Sn, ¹¹⁷Sn coupling constants (^{*n*}J (Hz)) for the compounds R_xSnCl_{4-x} (R = Me, Buⁿ, Ph; x = 4, 3, 2, 1) are listed in Table 1. The ¹³C data for the compounds R_xSnR'_{4-x}, (R = Me, Buⁿ; R' = Ph and R = Me; R' = Buⁿ; x = 3, 2, 1) in CDCl₃ are listed in Table 2, and those for the compounds Me₃SnX (X = pseudohalide) in DMSO-d₆ are listed in Table 3. The ^{*n*}J(¹³C-¹¹⁷Sn) values are not given since they can be derived from the relationship, ^{*n*}J(C-¹¹⁷Sn) =^{*n*}J(C-¹¹⁹Sn)/1.046.

The ¹³C data previously reported [1–7] for some of the compounds $R_x SnCl_{4-x}$ (R = Me, Buⁿ, Ph) and Me₃SnPh are similar to those reported here, but a detailed study of these compounds as series has not been previously carried out. In the present study I have concentrated mainly on two factors which influence the ¹³C data viz. (i) the type and number of substituents on tin, and (ii) the donor ability of the solvent.

(i) Substituent effects

For the methyl series Me_xSnCl_{4-x}, with x = 4, 3, 2, 1, the values of both δ and ${}^{1}J(C-{}^{119}Sn)$ measured in the non-complexing solvent CDCl₃ are significantly increased on going progressively from Me₄Sn to MeSnCl₃, i.e. on replacing the methyl groups by the more electronegative chlorine atoms. This is due to the electronwithdrawing inductive effect of chlorine which causes an increase in the *p*-character of the tin orbital bonded to chlorine and thus in the s-character of the tin orbital used in the bonding with a methyl group. A similar trend has been observed for lead compounds [12]. Thus satisfactory linear relationships are observed between the number of chlorine atoms in the tin compounds and their δ or ${}^{1}J(C-{}^{119}Sn)$ values (r = 0.970 and 0.900, respectively). There is also a linear relationship between ${}^{1}J({}^{13}\text{C}-{}^{119}\text{Sn})$ and ${}^{2}J({}^{1}\text{HC}-{}^{119}\text{Sn})$ for the compounds $\text{Me}_{x}\text{SnCl}_{4-x}$ with x = 4, 3, 2, 31, the r value being typically (Fig. 1); extrapolation of the correlation line gives large intercept for ${}^{2}J({}^{1}HC-{}^{119}Sn)$. McFarlane [13] and, more recently, Singh [14] observed a similarly large intercept for ${}^{2}J({}^{1}HC-Sn)$ in series of methyltin compounds, and suggested that one of the coupling constants receives a significant contribution from J(dipole) and/or J(orbital); probably it is J(dipole) which mainly contributes to ${}^{1}J(C-Sn)$, since the dipole term is usually stronger when heavy nuclei are involved.

TABLE 3

X	δ ^a	J(C-Sn)	
OH	- 1.4	441.2	
Cl	3.3	510.6	
NO ₃	0.0	519.2	
CN	3.6	521.0	
OCOCH ₃	0.0	524.4	
N ₃	0.6	529.5	
NCS	0.3	536.4	
NCO	0.6	541.6	

CARBON-13 NMR DATA; δ (ppm) AND $J(C-^{119}Sn)$ (Hz) FOR THE COMPOUNDS Me₃SnX IN DMSO- d_6

^a Downfield from internal TMS.

In the series $R_x \text{SnCl}_{4-x}$ ($R = \text{Bu}^n$ or Ph; x = 4, 3, 2, 1) the values of ${}^nJ({}^{13}\text{C}-{}^{119}\text{Sn})$ decrease in the order ${}^{1}J > {}^{3}J > {}^{2}J > {}^{4}J$ (Table 1). The values of ${}^{4}J(\text{C}-\text{Sn})$ for C(4) of the butyl group is too small to be satisfactorily defined but it is probably ca. 8 Hz. As in the methyl series (vide ultra), the values of δ and ${}^{1}J({}^{13}\text{C}-{}^{119}\text{Sn})$ for C(1) (the carbon atom directly attached to tin) show significant changes. The δ and ${}^{1}J(\text{C}-\text{Sn})$ values rise on replacing butyls in Bu $_4^n$ Sn progressively by chlorines, i.e., the values in CDCl₃ decrease in the order BuSnCl₃ > Bu₂SnCl₂ > Bu₃SnCl > Bu₄Sn. As for the methyl series, there is also a linear relationship (r = 0.995) between the number of chlorine atoms in the compounds Bu_xSnCl_{4-x}, x = 4, 3, 2, 1 and their $\delta(C(1))$ values in CDCl₃. The values of δ and ${}^nJ(\text{C}-\text{Sn})$ for C(2), C(3) and C(4) in the butyl group show no significant change on going from Bu₄Sn to BuSnCl₃.

In contrast, the δ values for C(1) and C(2) of the phenyl group (in CDCl₃) decrease whereas those for C(3) and C(4) increase on going progressively from Ph₄Sn to PhSnCl₃.

There is a linear relationship (r = 0.982) between the number of chlorine atoms in the compounds Ph_xSnCl_{4-x} and the $\delta(C(1))$ values in $CDCl_3$ (see Fig. 2a). The

Fig. 1. Linear relationship (r = 0.999) between ${}^{2}J(HC-{}^{119}Sn)$ of Me₄Sn (53 Hz), Me₃SnCl (58 Hz), Me₂SnCl₂ (70.2 Hz) and MeSnCl₃ (97.2 Hz) and their ${}^{1}J({}^{13}C-{}^{119}Sn)$ (Table 1) measured in CDCl₃.

Fig. 2. Linear relationships between number of chlorine atoms and either (a) ${}^{1}J(C^{-119}Sn)$ (\triangle) (r = 0.932) or (b) $\delta(C(1))$ (\bigcirc) (r = 0.982), in Ph_xSnCl_{4-x} (x = 1-4) in CDCl₃.

 ${}^{1}J(C-{}^{119}Sn)$ values in CDCl₃ rise when the phenyls in Ph₄Sn are successively replaced by chlorines (Table 1), and correlate linearly (r = 0.932) with the number of chlorines present (Fig. 2b).

With tetraorganotin compounds (Table 2), e.g. the series $Me_x SnPh_{4-x}$ with x = 0-4, as the number of phenyl groups increases, the $\delta(Me)$ values decrease by ca. 0.4 ppm for each step and the ${}^{1}J(C(Me)-{}^{119}Sn)$ values increase by ca. 14 Hz for each step. Large differences can be seen between the data for, e.g., MeSnPh₃ ($\delta = -10.6$ ppm, ${}^{1}J(C(Me)-{}^{119}Sn)$ 376.6 Hz) and MeSnCl₃ (δ 11.0 ppm, ${}^{1}J(C(Me)-{}^{119}Sn)$ 701.5

Fig. 3. Linear relationships between number of phenyl groups and either (a) ${}^{1}J(C-Sn)$ (\triangle) (r = 0.998) or (b) $\delta(C(1))$ (\bigcirc) (r = 0.978), for the phenyl group in Ph_xSnBu_{4-x} (x = 1-4) in CDCl₃.

Hz) in CDCl₃, and likewise with other members of the two series. This can be attributed to greater electronegativity of Cl than of Ph. Similarly, as the number of phenyl groups of the same series increases, the δ (Ph) values decrease and ${}^{1}J(C(Ph)-{}^{119}Sn)$ values increase. Linear relationships are observed between the number of phenyl groups in the series Me_xSnPh_{4-x} with x = 0-4 and either of the δ (Me) (r = 0.992), ${}^{1}J(C(Me)-{}^{119}Sn)$ values (r = 0.999), or δ (Ph) values (r = 0.973). Similarly for the series Bu_xSnPh_{4-x} with x = 0-4 both δ (Ph) and ${}^{1}J(C(Ph)-{}^{119}Sn)$ values correlate linearly with the number of phenyl groups in the compounds (the r values are 0.978 and 0.998, respectively) (Fig. 3a and b). There are no significant variations for the series Me_xSnBu_{4-x} with x = 0-4.

The ¹³C data of Me₃SnX, where X is a pseudo halide group, were obtained for solutions in DMSO- d_6 , this being used to insure larger ¹J(C-Sn) values and so larger differences between the compounds (Table 3). It seems that as the electronegativity of the substituent (X) increases the ¹J(C-¹¹⁹Sn) values increase, and the effects of the groups increase in the following sequence: OH \ll Cl < NO₃ \leq CN \leq OCOMe < N₃ < NCS < NCO.

(ii) Solvent effects

In donor solvents, e.g., DMSO- d_6 , the data for the tetraorganotin compounds, R_4 Sn and R_x Sn R'_{4-x} showed no significant change from those in CDCl₃, and this is as expected for tetra-coordinate tin. The marked increase in both the δ and ¹ $J(C^{-119}Sn)$ values for the chlorine derivatives $R_x SnCl_{4-x}$ (R = Me, Buⁿ, Ph; x = 1-3) on going from (CDCl₃) to the donor solvent DMSO- d_6 can be attributed to the coordination of donor solvent to tin. The considerable increase in ${}^{1}J(C-{}^{119}Sn)$ for Me₃SnCl (129 Hz), Bu₃SnCl (120 Hz), and Ph₃SnCl (197 Hz), is to be associated with penta-coordinate tin in the complexes R_3 SnCl · DMSO. The large increase in $^{1}J(C^{-119}Sn)$ values for Me₂SnCl₂ (533 Hz), Bu₂SnCl₂ (433 Hz) and Ph₂SnCl₂ (762 Hz) are attributed to formation of the hexa-coordinate tin complexes R_2SnCl_2 . 2DMSO. Similarly the increases in ${}^{1}J(C-{}^{119}Sn)$ values for MeSnCl₃ (316 Hz), BuSnCl₃ (174 Hz) and PhSnCl₃ (506 Hz) are consistent with hexa-coordination of the tin in the complexes $RSnCl_3 \cdot 2DMSO$. The results obtained for the methyl series in solution are in agreement with those reported previously for solid Me₃SnCl \cdot L, Me₂SnCl₂ · 2L, and MeSnCl₃ · 2L with L = DMSO or DMF [10]. To provide confirmation of the results obtained from the solutions, the complexes Me_3SnN_3 . DMSO, Me₃SnOCOMe · DMSO, Ph₃SnCl · DMSO, Ph₂SnCl₂ · 2DMSO, and $PhSnCl_3 \cdot 2DMSO$ were isolated from their DMSO solutions as white solids and characterized by elemental analysis. Furthermore, the complex Ph₂SnCl₂ · 2DMSO has been previously prepared and shown by X-ray diffraction to contain hexa-coordinate tin [11b].

To provide another check on a correlation between ${}^{1}J(C-{}^{119}Sn)$ and the coordination number of tin, the spectra of Me₃SnCl and Ph₃SnCl were recorded in various solvents (Table 4). There is only a small change in δ on going from one solvent to another, but the ${}^{1}J(C-Sn)$ values for the C atom of the methyl group and those for C(1) of the phenyl group were found to increase with increasing donor ability of the solvent. The coupling constants for the other carbon atoms of the phenyl group remain essentially constant throughout. If the ${}^{1}J(C-Sn)$ value is taken as a measure of the donor ability of the solvent, this ability rises in solvents in the sequence: $CDCl_3 \leq C_6H_6-d_6 < CH_3NO_2-d_3 < dioxane-d_8 < CH_3CN-d_3 \leq actone-d_6 \ll$

Solvent	Me ₃ SnCl		Ph ₃ SnCl							
	8 a	J(C-Sn)	C(1)		C(2)		C(3)		C(4)	
			8 a	^J (C-Sn)	8 a	$^{2}J(C-Sn)$	8 a	³ J(C-Sn)	8 4	⁴ J(C-Sn)
C ₆ H ₆ -d ₆	- 1.04	385.3	137.6	613.3	136.5	52.4	128.0	88.2	130.6	13.2
$CH_3NO_2-d_3$	-0.6	395.4	139.1	625.1	137.5	50.0	130.6	63.6	131.4	23.6
dioxane-d ₈	0.0	421.2	139.1	644.2	136.8	48.5	129.6	64.7	130.7	13.3
acetone-d ₆	0.6	430.9	140.6	660.4	136.9	48.5	129.5	64.8	130.6	14.8
CH ₃ CN-d ₃	0.8	428.1	140.4	675.1	137.1	48.5	129.9	67.7	131.0	14.6
CH ₃ OH-d ₄	0.0	491.7	142.5	759.0	137.2	47.1	129.6	67.7	130.4	14.7
$DMF-d_{7}^{c}$	2.4	505.5	144.0	797.2	136.9	47.1	129.0	72.1	129.6	16.2

CARBON-13 NMR DATA; $\delta(ppm)$ AND "J(C-¹¹⁹Sn) (Hz) FOR TIN COMPOUNDS Me₃SnCl AND Ph₃SnCl IN VARIOUS SOLVENTS^h

TABLE 4

344

 $CH_3OH-d_4 < DMF-d_7 < DMSO-d_6$. The increase in the ¹J(C-Sn) value can be attributed to complexation in solution, which causes an increase in the *s*-character of hybrid tin-carbon orbitals. In agreement with conclusions reached on the basis of ¹H NMR data [1], the ¹³C NMR data indicate that complexation does not affect the *s*-electron density on tin, but does raise it on the attached carbon.

Experimental

General

Natural abundance, proton-decoupled FT 13 C NMR spectra were recorded at 25°C on a Bruker-WH 90 DS spectrometer operating at 22.63 MHz. The pulse width of 6 s and 3 s delay were used, and between ca. 300 and 10000 Hz scans (depending on the nature of the compound) were accumulated with 16 K data points for a spectral width of 4807 Hz.

Preparation of compounds

The compounds Me₄Sn, Ph₄Sn, Bu₃SnCl, Ph₃SnCl and Bu₂SnCl₂ were commercial products. The compounds $R_x SnCl_{4-x}$ (R = Me, x = 1, 2, 3; R = Bu, x = 1 and R = Ph, x = 1, 2) were prepared by standard methods [15,16].

The compounds $R_x SnR'_{4-x}$ (R = Me, Buⁿ; R' = Ph and R = Me, R' = Buⁿ; x = 3, 2, 1) were prepared from R_3SnCl or R_2SnCl_2 (R = Me, Buⁿ, Ph) and the appropriate organolithium compound, RLi, in ether under nitrogen, as previously described [15].

The compounds Me_3SnX (X = OH, OCOMe, NO₃, CN, N₃, NCS) were prepared from Me_3SnCl and NaOH [17], AgOCOMe/NO₃ [18] and NaCN/N₃/NCS [19], respectively, and Me_3SnNCO from Me_3SnOH and urea [20].

Preparation of DMSO complexes Ph_3SnCl , Ph_2SnCl_2 , $PhSnCl_3$, Me_3SnN_3 and $Me_3SnOCOMe$

A. $Ph_2SnCl_2 \cdot 2DMSO$. A small amount of Ph_2SnCl_2 was dissolved in a minimum volume of DMSO. The mixture was allowed to stand for ca. 1 h and then ethanol was added dropwise. A white solid separated, and the liquid was decanted from this. The solid was washed twice with a small amount of ethanol and several times with hexane, than dried in vacuo. M.p. 132–134°C (Lit. [11a], 134–135°C). (Analysis. Found: C, 38.95; H, 4.41. $C_{16}H_{22}Cl_2S_2O_2Sn$ calcd.: C, 38.42; H, 4.40%).

B. $Ph_3SnCl \cdot DMSO$. This compound was prepared similarly as a white solid m.p. 106-108°C. (Analysis. Found: C, 51.63; H, 4.42. $C_{20}H_{21}ClSOSn$ calcd.: C, 51.81; H, 4.53%).

C. $PhSnCl_3 \cdot 2DMSO$. This compound was also prepared similarly as a white solid, m.p. 146–148°C. (Analysis. Found: C, 26.23; H, 3.60. $C_{10}H_{17}Cl_3S_2O_2Sn$ calcd.: C, 26.45; H, 3.71%).

D. $Me_3SnN_3 \cdot DMSO$ and $Me_3SnOCOMe \cdot DMSO$. These compounds were prepared by dissolving a small amount of the organotin compound in a minimum volume of DMSO then leaving the solution for several days at room temperature. The solid which appeared was separated by decantation and washed several times with small portions of ethanol and then with small portions of n-hexane, then dried under vacuum for several hours to give colourless cubic crystals of $Me_3SnN_3 \cdot DMSO$, m.p. 139–140°C (Analysis. Found: C, 20.92; H, 5.13; N, 14.61. $C_5H_{15}N_3SOSn$ calcd.: C, 21.15; H, 5.29; N, 14.80%), and colourless needles of $Me_3SnOCOMe \cdot DMSO$, m.p. 164°C (with sublimation). (Analysis. Found: C, 28.32; H, 5.81. $C_7H_{18}SO_3Sn$ calcd.: C, 27.93; H, 6.00%).

Acknowledgement

I am grateful to Mr. Faiz Mahmood for assistance in recording the ¹H and ¹³C NMR spectra.

References

- 1 J.W. Emsley, J. Feeney and L.H. Sutcliffe, Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 11, Pergamon Press, Oxford, 1978, p. 115, and ref. therein.
- 2 M.J. Vaickus and D.G. Anderson, Org. Mag. Res., 14 (1980) 278.
- 3 J. Otera, J. Organomet. Chem., 221 (1981) 57.
- 4 J. Holecek, M. Nadvornik, K. Handlir and A. Lyčka, J. Organomet. Chem., 241 (1983) 177.
- 5 J. Holeček, K. Handlír, M. Nadvorník and A. Lyčka, J. Organomet. Chem., 258 (1983) 147.
- 6 M. Nadvorník, J. Holeček, K. Handlír and A. Lyčka, J. Organomet. Chem., 275 (1984), 43.
- 7 A. Lyčka, J. Holeček, M. Nadvorník and K. Handlír, J. Organomet. Chem., 280 (1985) 323.
- 8 G. Barbieri and F. Taddei, J. Chem. Soc. Perkin II, (1972) 1327.
- 9 T.N. Mitchell, J. Organomet. Chem., 59 (1973) 189.
- 10 V.S. Petrosyan, N.S. Yashina and O.A. Reutov, J. Organomet. Chem., 52 (1973) 315.
- 11 (a) T. Tanaka, Inorg. Chim. Acta, 1 (1969) 217;
- (b) L. Coghi, C. Pelizzi and G. Pelizzi, Chem. Abstr., 82 (1975) 98085X.
- 12 R.H. Cox, J. Magn. Res., 33 (1979) 61.
- 13 W. McFarlane, J. Chem. Soc., A, (1967) 528.
- 14 G. Singh, J. Organomet. Chem., 99 (1975) 251.
- 15 B.J. Aylett, Organometallic Compounds, 4th edit., Vol. 1, part II, Chapman and Hall, 1979, p. 177, and ref. therein.
- 16 A.G. Davies and P.J. Smith, Comprehensive Organometallic Chemistry, Pergamon Press, Chapter 11, 1982, p. 519.
- 17 J.G.A. Luijten, Chem. Abstr. 60 (1964) 5533.
- 18 M. Gielen and N. Sprecher, Organomet. Chem. Rev., 1 (1966) 455; V.S. Petrosyan, N.S. Yashina, and O.A. Reutov, Adv. Organomet. Chem. Rev., 14 (1976) 63.
- 19 J.S. Thayer and R. West, Inorg. Chem., 3 (1964) 889; J. Lorberth, Chem. Ber., 98 (1965) 1201.
- 20 W. Stamm, J. Org. Chem., 30 (1965) 693.